Charles Mullon
University of Lausanne, Switzerland
Eco-evolutionary dynamics under non-random interactions
Abstract
Organisms continuously modify their living conditions, transforming their environment, microbiome, and sometimes culture. Where these modifications influence the fitness of conspecifics, a feedback emerges between the evolution of traits and the environment in which they are expressed. To investigate such feedback, it is typically assumed that individuals interact at random. In this case, one can study the invasion of a rare mutant trait in an environment set by a common resident ignoring mutant-mutant interactions. However, non-random interactions are common in nature. In this talk, I will report some results on the effect of non-random interactions on eco-evolutionary dynamics, focusing on two mechanisms that lead to such non-random interactions: spatial structure and biased behaviours between parents and their offspring. In both cases, selection depends on complex feedbacks between individuals of the same mutant lineage. By disentangling and quantifying these feedbacks, this research can help understand the nature of adaptation via non-genetic modifications, with implications for how organisms evolve to transform their environments.